Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.194
1.
Sci Rep ; 14(1): 10498, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714794

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


AC133 Antigen , Mice, Knockout , Animals , Mice , AC133 Antigen/metabolism , AC133 Antigen/genetics , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Photoreceptor Cells, Vertebrate/metabolism
2.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743626

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Eye Diseases, Hereditary , Genetic Diseases, X-Linked , Myopia , Night Blindness , Rhodopsin , Animals , Night Blindness/genetics , Night Blindness/metabolism , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/metabolism , Mice , Rhodopsin/genetics , Rhodopsin/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Myopia/genetics , Myopia/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Darkness , Transducin/genetics , Transducin/metabolism , Gene Knock-In Techniques , Disease Models, Animal
3.
Exp Eye Res ; 242: 109879, 2024 May.
Article En | MEDLINE | ID: mdl-38570182

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Disease Models, Animal , Electroretinography , Iodates , Mice, Inbred C57BL , Retinal Degeneration , Tamoxifen , Tomography, Optical Coherence , Animals , Iodates/toxicity , Mice , Tomography, Optical Coherence/methods , Tamoxifen/pharmacology , Retinal Degeneration/prevention & control , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Real-Time Polymerase Chain Reaction , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Selective Estrogen Receptor Modulators/pharmacology , RNA, Messenger/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Rod Opsins/metabolism
4.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648465

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Disease Models, Animal , Gene Knock-In Techniques , Retinal Rod Photoreceptor Cells , Retinitis Pigmentosa , Rhodopsin , Animals , Rhodopsin/metabolism , Rhodopsin/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Cilia/metabolism , Cilia/pathology
5.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673863

In this review, we outline our current understanding of the mechanisms involved in the absorption, storage, and transport of dietary vitamin A to the eye, and the trafficking of rhodopsin protein to the photoreceptor outer segments, which encompasses the logistical backbone required for photoreceptor cell function. Two key mechanisms of this process are emphasized in this manuscript: ocular and systemic vitamin A membrane transporters, and rhodopsin transporters. Understanding the complementary mechanisms responsible for the generation and proper transport of the retinylidene protein to the photoreceptor outer segment will eventually shed light on the importance of genes encoded by these proteins, and their relationship on normal visual function and in the pathophysiology of retinal degenerative diseases.


Rhodopsin , Vitamin A , Rhodopsin/metabolism , Rhodopsin/genetics , Humans , Vitamin A/metabolism , Animals , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells/metabolism , Biological Transport
6.
Elife ; 122024 Apr 25.
Article En | MEDLINE | ID: mdl-38661530

Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.


DNA Copy Number Variations , Retinitis Pigmentosa , Rhodopsin , Aged , Humans , Male , Organoids/metabolism , Organoids/drug effects , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism
7.
Exp Eye Res ; 241: 109856, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479725

Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP) causes progressive vision loss and is potentially incurable, accounting for 25% of adRP cases. Studies on RHO-adRP mechanism were at large based on the biochemical and cellular properties, especially class-3. Nonetheless, the absence of an appropriate model for class-3 RHO-adRP has impeded comprehensive exploration. Here, induced pluripotent stem cells (iPSCs) were generated from a healthy control and two sibling RP patients with the same point mutation, c.403C>T (p.R135W). The first three-dimensional (3D) retinal organoid model of a class-3 RHO point mutation from patient-derived iPSCs was generated. Significant defects were observed in rod photoreceptors in terms of localization, morphology, transcriptional profiling and single cell resolution, to better understand the human disease resulting from RHO mutations from a developmental perspective. This first human model of class-3 RHO-adRP provides a representation of patient's retina in vitro and displays features of RHO-adRP retinal organoids relevant for therapeutic development.


Retina , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Mutation , Rhodopsin/genetics , Organoids
8.
Curr Biol ; 34(7): 1492-1505.e6, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38508186

Vision under dim light relies on primary cilia elaborated by rod photoreceptors in the retina. This specialized sensory structure, called the rod outer segment (ROS), comprises hundreds of stacked, membranous discs containing the light-sensitive protein rhodopsin, and the incorporation of new discs into the ROS is essential for maintaining the rod's health and function. ROS renewal appears to be primarily regulated by extrinsic factors (light); however, results vary depending on different model organisms. We generated two independent transgenic mouse lines where rhodopsin's fate is tracked by a fluorescently labeled rhodopsin fusion protein (Rho-Timer) and show that rhodopsin incorporation into nascent ROS discs appears to be regulated by both external lighting cues and autonomous retinal clocks. Live-cell imaging of the ROS isolated from mice exposed to six unique lighting conditions demonstrates that ROS formation occurs in a periodic manner in cyclic light, constant darkness, and artificial light/dark cycles. This alternating bright/weak banding of Rho-Timer along the length of the ROS relates to inhomogeneities in rhodopsin density and potential points of structural weakness. In addition, we reveal that prolonged dim ambient light exposure impacts not only the rhodopsin content of new discs but also that of older discs, suggesting a dynamic interchange of material between new and old discs. Furthermore, we show that rhodopsin incorporation into the ROS is greatly altered in two autosomal recessive retinitis pigmentosa mouse models, potentially contributing to the pathogenesis. Our findings provide insights into how extrinsic (light) and intrinsic (retinal clocks and genetic mutation) factors dynamically regulate mammalian ROS renewal.


Retinal Rod Photoreceptor Cells , Rhodopsin , Animals , Mice , Light , Mice, Transgenic , Reactive Oxygen Species/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Rod Cell Outer Segment/metabolism
9.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38451738

Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.


Evolution, Molecular , Fishes , Animals , Phylogeny , Fishes/genetics , Rhodopsin/genetics , Mutation
10.
Exp Eye Res ; 240: 109826, 2024 Mar.
Article En | MEDLINE | ID: mdl-38340947

Retinitis pigmentosa (RP) is an inherited retinal disorder characterized by the degeneration of photoreceptors. RhoP23H/+ mice, which carry a Pro23His mutation in the RHODOPSIN (Rho) gene, are one of the most studied animal models for RP. However, except for the photoreceptors, other retinal neural cells have not been fully investigated in this model. Here, we record the temporal changes of the retina by optical coherence tomography (OCT) imaging of the RhoP23H/+ mice, from early to mid-phase of retinal degeneration. Based on thickness analysis, we identified a natural retinal thickness adaption in wild-type mice during early adulthood and observed morphological compensation of the inner retina layer to photoreceptor degeneration in the RhoP23H/+ mice, primarily on the inner nuclear layer (INL). RhoP23H/+ mice findings were further validated via: histology showing the negative correlation of INL and ONL thicknesses; as well as electroretinogram (ERG) showing an increased b-wave to a-wave ratio. These results unravel the sequential morphologic events in this model and suggest a better understanding of retinal degeneration of RP for future studies.


Retinal Degeneration , Retinitis Pigmentosa , Mice , Animals , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Rhodopsin/genetics , Retina/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Electroretinography , Disease Models, Animal
11.
Hum Gene Ther ; 35(5-6): 151-162, 2024 Mar.
Article En | MEDLINE | ID: mdl-38368562

Mutations in the rhodopsin (RHO) gene are the predominant causes of autosomal dominant retinitis pigmentosa (adRP). Given the diverse gain-of-function mutations, therapeutic strategies targeting specific sequences face significant challenges. Here, we provide a universal approach to conquer this problem: we have devised a CRISPR-Cas12i-based, mutation-independent gene knockout and replacement compound therapy carried by a dual AAV2/8 system. In this study, we successfully delayed the progression of retinal degeneration in the classic mouse disease model RhoP23H, and also RhoP347S, a new native mouse mutation model we developed. Our research expands the horizon of potential options for future treatments of RHO-mediated adRP.


Retinal Degeneration , Retinitis Pigmentosa , Mice , Animals , Rhodopsin/genetics , Mice, Knockout , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Mutation , Genes, Dominant
12.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38314890

Intraspecific functional variation is critical for adaptation to rapidly changing environments. For visual opsins, functional variation can be characterized in vitro and often reflects a species' ecological niche but is rarely considered in the context of intraspecific variation or the impact of recent environmental changes on species of cultural or commercial significance. Investigation of adaptation in postglacial lakes can provide key insight into how rapid environmental changes impact functional evolution. Here, we report evidence for molecular adaptation in vision in 2 lineages of Nearctic fishes that are deep lake specialists: ciscoes and deepwater sculpin. We found depth-related variation in the dim-light visual pigment rhodopsin that evolved convergently in these 2 lineages. In vitro characterization of spectral sensitivity of the convergent deepwater rhodopsin alleles revealed blue-shifts compared with other more widely distributed alleles. These blue-shifted rhodopsin alleles were only observed in deep clear postglacial lakes with underwater visual environments enriched in blue light. This provides evidence of remarkably rapid and convergent visual adaptation and intraspecific functional variation in rhodopsin. Intraspecific functional variation has important implications for conservation, and these fishes are of conservation concern and great cultural, commercial, and nutritional importance to Indigenous communities. We collaborated with the Saugeen Ojibway Nation to develop and test a metabarcoding approach that we show is efficient and accurate in recovering the ecological distribution of functionally relevant variation in rhodopsin. Our approach bridges experimental analyses of protein function and genetics-based tools used in large-scale surveys to better understand the ecological extent of adaptive functional variation.


Evolution, Molecular , Rhodopsin , Animals , Rhodopsin/genetics , Rhodopsin/metabolism , Fishes/genetics , Fishes/metabolism , Vision, Ocular , Ecosystem
13.
Nat Commun ; 15(1): 1451, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365903

Mutations in rhodopsin can cause it to misfold and lead to retinal degeneration. A distinguishing feature of these mutants in vitro is that they mislocalize and aggregate. It is unclear whether or not these features contribute to retinal degeneration observed in vivo. The effect of P23H and G188R misfolding mutations were examined in a heterologous expression system and knockin mouse models, including a mouse model generated here expressing the G188R rhodopsin mutant. In vitro characterizations demonstrate that both mutants aggregate, with the G188R mutant exhibiting a more severe aggregation profile compared to the P23H mutant. The potential for rhodopsin mutants to aggregate in vivo was assessed by PROTEOSTAT, a dye that labels aggregated proteins. Both mutants mislocalize in photoreceptor cells and PROTEOSTAT staining was detected surrounding the nuclei of photoreceptor cells. The G188R mutant promotes a more severe retinal degeneration phenotype and greater PROTEOSTAT staining compared to that promoted by the P23H mutant. Here, we show that the level of PROTEOSTAT positive cells mirrors the progression and level of photoreceptor cell death, which suggests a potential role for rhodopsin aggregation in retinal degeneration.


Retinal Degeneration , Retinitis Pigmentosa , Rhodopsin , Animals , Mice , Disease Models, Animal , Mutation , Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Protein Aggregates/genetics
14.
J Mol Evol ; 92(1): 61-71, 2024 Feb.
Article En | MEDLINE | ID: mdl-38324225

Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.


Receptors, G-Protein-Coupled , Rhodopsin , Humans , Rhodopsin/genetics , Rhodopsin/chemistry , Rhodopsin/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/chemistry , Signal Transduction , Protein Structure, Secondary , Mutation
15.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38339118

Variants within the Retinitis Pigmentosa GTPase regulator (RPGR) gene are the predominant cause of X-Linked Retinitis Pigmentosa (XLRP), a common and severe form of inherited retinal disease. XLRP is characterised by the progressive degeneration and loss of photoreceptors, leading to visual loss and, ultimately, bilateral blindness. Unfortunately, there are no effective approved treatments for RPGR-associated XLRP. We sought to investigate the efficacy of RPGRORF15 gene supplementation using a clinically relevant construct in human RPGR-deficient retinal organoids (ROs). Isogenic RPGR knockout (KO)-induced pluripotent stem cells (IPSCs) were generated using established CRISPR/Cas9 gene editing methods targeting RPGR. RPGR-KO and isogenic wild-type IPSCs were differentiated into ROs and utilised to test the adeno associated virus (AAV) RPGR (AAV-RPGR) clinical vector construct. The transduction of RPGR-KO ROs using AAV-RPGR successfully restored RPGR mRNA and protein expression and localisation to the photoreceptor connecting cilium in rod and cone photoreceptors. Vector-derived RPGR demonstrated equivalent levels of glutamylation to WT ROs. In addition, treatment with AAV-RPGR restored rhodopsin localisation within RPGR-KO ROs, reducing mislocalisation to the photoreceptor outer nuclear layer. These data provide mechanistic insights into RPGRORF15 gene supplementation functional potency in human photoreceptor cells and support the previously reported Phase I/II trial positive results using this vector construct in patients with RPGR-associated XLRP, which is currently being tested in a Phase III clinical trial.


Opsins , Retinitis Pigmentosa , Humans , Opsins/genetics , Dependovirus/genetics , Dependovirus/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Reactive Oxygen Species/metabolism , Carrier Proteins/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Genetic Therapy/methods , Mutation
16.
Ophthalmic Genet ; 45(2): 147-152, 2024 Apr.
Article En | MEDLINE | ID: mdl-38284172

PURPOSE: To identify RHO mutations in patients with non-syndromic retinitis pigmentosa (NS-RP). METHODS: A total of 143 probands (46 family history and 97 sporadic cases) with NS-RP were recruited from Southeast China. The coding exons and adjacent intronic regions of RHO were PCR-amplified and sequenced by Sanger sequencing. The candidate variant was evaluated by the guidelines of American College of Medical Genetics and further validated through co-segregation analysis within the family. RESULTS: Five heterozygous mutations in RHO were detected in 5 out of 143 probands, where the frequency of RHO mutations in our cohort was approximately 3.5% (5/143) and 10.8% (5/46) for probands and families with NS-RP, respectively. Three known disease-causing mutations including c.C1030T (p.Q344X), c.C173G (p.T58R), and c.G266A (p.G89D) were identified in three unrelated families. The other two previously unreported mutations c.557C>A (p.S186X) and c.944delA (p.N315TfsX43) were confirmed in Family RP-087 and Family RP-139, respectively. These mutations co-segregated with available affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. CONCLUSIONS: This report expands the mutational spectrum of RHO gene associated with NS-RP and demonstrates the frequency of RP RHO mutations in Southeast Chinese populations.


Retinitis Pigmentosa , Rhodopsin , Humans , Rhodopsin/genetics , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Mutation , Base Sequence , DNA Mutational Analysis
17.
Nat Commun ; 15(1): 65, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167346

Rhodopsins are ubiquitous light-driven membrane proteins with diverse functions, including ion transport. Widely distributed, they are also coded in the genomes of giant viruses infecting phytoplankton where their function is not settled. Here, we examine the properties of OLPVR1 (Organic Lake Phycodnavirus Rhodopsin) and two other type 1 viral channelrhodopsins (VCR1s), and demonstrate that VCR1s accumulate exclusively intracellularly, and, upon illumination, induce calcium release from intracellular IP3-dependent stores. In vivo, this light-induced calcium release is sufficient to remote control muscle contraction in VCR1-expressing tadpoles. VCR1s natively confer light-induced Ca2+ release, suggesting a distinct mechanism for reshaping the response to light of virus-infected algae. The ability of VCR1s to photorelease calcium without altering plasma membrane electrical properties marks them as potential precursors for optogenetics tools, with potential applications in basic research and medicine.


Calcium , Rhodopsin , Rhodopsin/genetics , Rhodopsin/metabolism , Light , Cell Membrane/metabolism , Phytoplankton/metabolism , Rhodopsins, Microbial/metabolism
18.
J Chem Inf Model ; 64(3): 974-982, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38237560

Krokinobacter eikastus rhodopsin 2 (KR2) is a typical light-driven sodium pump. Although wild-type KR2 exhibits high Na+ selectivity, mutagenesis performed on the residues constituting the entrance enables permeation of K+ and Cs+, while the underlying mechanism remains elusive. This study presents a comprehensive molecular dynamics investigation, including force field optimization, metadynamics, and alchemical free energy methods, to explore the N61L/G263F mutant of KR2, which exhibits transportability for K+ and Cs+. The introduced Phe263 residue can directly promote ion binding at the entrance through cation-π interactions, while the N61L mutation can enhance ion binding at Phe46 by relieving steric hindrance. These results suggest that cation-π interactions may significantly influence the ion transportability and selectivity of KR2, which can provide important insights for protein engineering and the design of artificial ion transporters.


Flavobacteriaceae , Molecular Dynamics Simulation , Sodium-Potassium-Exchanging ATPase , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Rhodopsin/chemistry , Rhodopsin/genetics , Rhodopsin/metabolism , Cations/metabolism
19.
Jpn J Ophthalmol ; 68(1): 1-11, 2024 Jan.
Article En | MEDLINE | ID: mdl-38070066

PURPOSE: To report the genotypes and clinical features of RHO-associated retinitis pigmentosa (RHO-RP) in the Kyushu region of Japan. STUDY DESIGN: Retrospective, single-center study. METHODS: Sixteen RP patients with pathogenic RHO variants seen at Kyushu University Hospital were investigated. Clinical data including age, best-corrected visual acuity (BCVA) in logarithm of the minimum angle of resolution (logMAR) units, visual field, fundus photography, and optical coherence tomography were retrospectively obtained. Visual outcomes were compared between classical and sector phenotypes and among genetic variants. RESULTS: The mean age at the first visit was 54.0 ± 15.7 years, with a mean follow-up of 7.6 ± 4.0 years. Fourteen patients (87.5%) showed the classical RP phenotype, of whom four were associated with p.[Pro23Leu] and two had p.[Pro347Leu] variants. In addition, two patients with the sector phenotype harbored p.[Ala164Val] variants. Among the classical RHO-RP patients, the mean BCVA decreased from 0.60 to 1.08 logMAR over the follow-up period (7.4 ± 4.1 years) whereas BCVA was preserved at 0.04 logMAR in sector RHO-RP patients (9.0 ± 3.0 years). Genotype-to-phenotype analysis demonstrated that p.[Pro347Leu] was associated with severe vision loss at an earlier age. Macular complications such as epiretinal membrane and cystoid macular edema were observed in 5 classical RHO-RP patients. CONCLUSION: p.[Pro23Leu], but not p.[Pro23His], was a frequent variant causing RHO-RP in the Kyushu region of Japan. As reported in previous studies, patients with the p.[Pro347Leu] variant showed a more severe phenotype, and variants causing sector RHO-RP were associated with a good prognosis.


Retinitis Pigmentosa , Rhodopsin , Adult , Aged , Humans , Middle Aged , Genotype , Japan/epidemiology , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/complications , Retrospective Studies , Tomography, Optical Coherence/methods , Visual Fields , Rhodopsin/genetics
20.
JCI Insight ; 9(2)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38060327

An arginine to cysteine substitution at amino acid position 203 (C203R) is the most common missense mutation in human cone opsin. Linked to color blindness and blue cone monochromacy (BCM), C203 is involved in a crucial disulfide bond required for proper folding. It has previously been postulated that expression of mutant C203R cone opsin exerts a toxic effect on cone photoreceptors, similar to some well-characterized missense mutations in rhodopsin that lead to protein misfolding. In this study, we generated and characterized a BCM mouse model carrying the equivalent C203R mutation (Opn1mwC198R Opn1sw-/-) to investigate the disease mechanism and develop a gene therapy approach for this disorder. Untreated Opn1mwC198R Opn1sw-/- cones phenocopied affected cones in human patients with the equivalent mutation, exhibiting shortened or absent cone outer segments and loss of function. We determined that gene augmentation targeting cones specifically yielded robust rescue of cone function and structure when Opn1mwC198R Opn1sw-/- mice were treated at early ages. Importantly, treated cones displayed elaborated outer segments and replenished expression of crucial cone phototransduction proteins. Interestingly, we were unable to detect OPN1MWC198R mutant opsin at any age. We believe this is the first proof-of-concept study exploring the efficacy of gene therapy in BCM associated with a C203R mutation.


Color Vision Defects , Cone Opsins , Retinal Cone Photoreceptor Cells , Humans , Animals , Mice , Retinal Cone Photoreceptor Cells/metabolism , Mutation, Missense , Cone Opsins/genetics , Cone Opsins/metabolism , Rhodopsin/genetics
...